Differential operators and BV structures in noncommutative geometry

نویسندگان

  • Victor Ginzburg
  • Travis Schedler
چکیده

We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck’s notion of differential operator on a commutative algebra in such a way that derivations of the commutative algebra are replaced by DerA, the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A), a certain ‘Fock space’ associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)), of differential operators, is filtered and grD(F(A)), the associated graded algebra, is commutative in some ‘twisted’ sense. The resulting double Poisson structure on grD(F(A)) is closely related to the one introduced by Van den Bergh. Specifically, we prove that grD(F(A)) ∼= F(TA(DerA)), provided the algebra A is smooth. It is crucial for our construction that the Fock space F(A) carries an extra-structure of a wheelgebra, a new notion closely related to the notion of a wheeled PROP. There are also notions of Lie wheelgebras, and so on. In that language, D(F(A)) becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on DerA gives rise to a second order (wheeled) differential operator, a noncommutative analogue of the BVoperator that makes F(TA(DerA)) a BV-wheelgebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 71 00 06 v 2 3 O ct 1 99 7 VECTOR FIELDS AND DIFFERENTIAL OPERATORS : NONCOMMUTATIVE CASE

A notion of Cartan pairs as an analogy of vector fields in the realm of noncommutative geometry has been proposed in [2]. In this paper we give an outline of the construction of a noncommutative analogy of the algebra of partial differential operators as well as its natural (Fock type) representation. We shall also define co-universal vector fields and covariant derivatives.

متن کامل

ar X iv : q - a lg / 9 71 00 06 v 1 2 O ct 1 99 7 VECTOR FIELDS AND DIFFERENTIAL OPERATORS : NONCOMMUTATIVE CASE

A notion of Cartan pairs as an analogy of vector fields in the realm of noncommutative geometry has been proposed in [2]. In this paper we give an outline of the construction of a noncommutative analogy of the algebra of partial differential operators as well as its natural (Fock type) representation. We shall also define co-universal vector fields and covariant derivatives.

متن کامل

Cohomological Operators and Covariant Quantum Superalgebras

We obtain an interesting realization of the de Rham cohomological operators of differential geometry in terms of the noncommutative q-superoscillators for the supersymmetric quantum group GLqp(1|1). In particular, we show that a unique superalgebra, obeyed by the bilinears of fermionic and bosonic noncommutative q-(super)oscillators of GLqp(1|1), is exactly identical to the one obeyed by the de...

متن کامل

Noncommutative spectral geometry of Riemannian foliations

According to [9, 8], the initial datum of noncommutative differential geometry is a spectral triple (A,H, D) (see Section 3.1 for the definition), which provides a description of the corresponding geometrical space in terms of spectral data of geometrical operators on this space. The purpose of this paper is to construct spectral triples given by transversally elliptic operators with respect to...

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008